Similarity Measures for Network Time Prisms
نویسندگان
چکیده
منابع مشابه
Similarity Measures for Network Time Prisms
Space-time paths and prisms are time geographic concepts delimiting the actual and potential mobility pattern of an object in space and time, respectively. While there is a range of similarity measures for space-time paths, it is only recently that researchers started to develop similarity measures for the space-time prism (STP). This paper proposes a new methodology for measuring the similarit...
متن کاملEvaluation of Similarity Measures for Template Matching
Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...
متن کاملNew distance and similarity measures for hesitant fuzzy soft sets
The hesitant fuzzy soft set (HFSS), as a combination of hesitant fuzzy and soft sets, is regarded as a useful tool for dealing with the uncertainty and ambiguity of real-world problems. In HFSSs, each element is defined in terms of several parameters with arbitrary membership degrees. In addition, distance and similarity measures are considered as the important tools in different areas such as ...
متن کاملSOME SIMILARITY MEASURES FOR PICTURE FUZZY SETS AND THEIR APPLICATIONS
In this work, we shall present some novel process to measure the similarity between picture fuzzy sets. Firstly, we adopt the concept of intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and picture fuzzy sets. Secondly, we develop some similarity measures between picture fuzzy sets, such as, cosine similarity measure, weighted cosine similarity measure, set-theoretic similar...
متن کاملLearning Time-Series Similarity with a Neural Network by Combining Similarity Measures
Within this paper we present the approach of learning the non-linear combination of time-series similarity values through a neural network. A wide variety of time-series comparison methods, coefficients and criteria can be found in the literature that are all very specific, and hence apply only for a small fraction of applications. Instead of designing a new criteria we propose to combine the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Conference on GIScience Short Paper Proceedings
سال: 2016
ISSN: 2573-783X
DOI: 10.21433/b3117t28n7cn